Cart (Loading....) | Create Account
Close category search window
 

Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dang, B. ; Microelectron. Res. Center, Georgia Inst. of Technol., Atlanta, GA, USA ; Bakir, M.S. ; Meindl, J.D.

Power dissipation in microprocessors will reach a level that necessitates chip-level liquid cooling in the near future. An on-chip microfluidic heat sink can reduce the thermal interfaces between an IC chip and the convective cooling medium. Through wafer-level processing, integrated thermal-fluidic I/O interconnects enable on-chip microfluidic heat sinks with ultrasmall form factor at low-cost. This letter describes wafer-level integration of microchannels at the wafer back-side with through-wafer fluidic paths and thermal-fluidic input/output interconnection for future generation gigascale integrated chips.

Published in:

Electron Device Letters, IEEE  (Volume:27 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.