By Topic

Minimum reliable scale selection in 3D

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wyatt, C. ; Dept. of Electr. & Comput. Eng., Virginia Polytech Inst. & State Univ., Blacksburg, VA, USA ; Bayram, E. ; Yaorong Ge

Multiscale analysis is often required in image processing applications because image features are optimally detected at different levels of resolution. With the advance of high-resolution 3D imaging, the extension of multiscale analysis to higher dimensions is necessary. This paper extends an existing 2D scale selection method, known as the minimum reliable scale, to 3D volumetric images. The method is applied to 3D boundary detection and is illustrated in examples from biomedical imaging. The experimental results show that the 3D scale selection improves the detection of edges over single scale operators using as few as three different scales.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 3 )