By Topic

Estimation of high-density regions using one-class neighbor machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Munoz ; Dept. of Stat., Carlos III Univ., Madrid, Spain ; J. M. Moguerza

In this paper, we investigate the problem of estimating high-density regions from univariate or multivariate data samples. We estimate minimum volume sets, whose probability is specified in advance, known in the literature as density contour clusters. This problem is strongly related to one-class support vector machines (OCSVM). We propose a new method to solve this problem, the one-class neighbor machine (OCNM) and we show its properties. In particular, the OCNM solution asymptotically converges to the exact minimum volume set prespecified. Finally, numerical results illustrating the advantage of the new method are shown.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:28 ,  Issue: 3 )