By Topic

Context-based segmentation of image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goldberger, J. ; Sch. of Eng., Bar-Ilan Univ., Ramat-Gan, Israel ; Greenspan, H.

We describe an algorithm for context-based segmentation of visual data. New frames in an image sequence (video) are segmented based on the prior segmentation of earlier frames in the sequence. The segmentation is performed by adapting a probabilistic model learned on previous frames, according to the content of the new frame. We utilize the maximum a posteriori version of the EM algorithm to segment the new image. The Gaussian mixture distribution that is used to model the current frame is transformed into a conjugate-prior distribution for the parametric model describing the segmentation of the new frame. This semisupervised method improves the segmentation quality and consistency and enables a propagation of segments along the segmented images. The performance of the proposed approach is illustrated on both simulated and real image data.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 3 )