Cart (Loading....) | Create Account
Close category search window
 

Relief texture from specularities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jing Wang ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; Dana, K.J.

In vision and graphics, advanced object models require not only 3D shape, but also surface detail. While several scanning devices exist to capture the global shape of an object, few methods concentrate on capturing the fine-scale detail. Fine-scale surface geometry (relief texture), such as surface markings, roughness, and imprints, is essential in highly realistic rendering and accurate prediction. We present a novel approach for measuring the relief texture of specular or partially specular surfaces using a specialized imaging device with a concave parabolic mirror to view multiple angles in a single image. Laser scanning typically fails for specular surfaces because of light scattering, but our method is explicitly designed for specular surfaces. Also, the spatial resolution of the measured geometry is significantly higher than standard methods, so very small surface details are captured. Furthermore, spatially varying reflectance is measured simultaneously, i.e., both texture color and texture shape are retrieved.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 3 )

Date of Publication:

March 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.