By Topic

Generic object recognition with boosting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Opelt, A. ; Inst. of Electr. Measurement & Measurement Signal Process., Graz Univ. of Technol., Austria ; Pinz, A. ; Fussenegger, M. ; Auer, P.

This paper explores the power and the limitations of weakly supervised categorization. We present a complete framework that starts with the extraction of various local regions of either discontinuity or homogeneity. A variety of local descriptors can be applied to form a set of feature vectors for each local region. Boosting is used to learn a subset of such feature vectors (weak hypotheses) and to combine them into one final hypothesis for each visual category. This combination of individual extractors and descriptors leads to recognition rates that are superior to other approaches which use only one specific extractor/descriptor setting. To explore the limitation of our system, we had to set up new, highly complex image databases that show the objects of interest at varying scales and poses, in cluttered background, and under considerable occlusion. We obtain classification results up to 81 percent ROC-equal error rate on the most complex of our databases. Our approach outperforms all comparable solutions on common databases.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 3 )