By Topic

Nonsmooth nonnegative matrix factorization (nsNMF)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pascual-Montano, A. ; Dept. of Comput. Archit. & Syst. Eng., Univ. Complutense, Madrid, Spain ; Carazo, J.M. ; Kochi, K. ; Lehmann, Dietrich
more authors

We propose a novel nonnegative matrix factorization model that aims at finding localized, part-based, representations of nonnegative multivariate data items. Unlike the classical nonnegative matrix factorization (NMF) technique, this new model, denoted "nonsmooth nonnegative matrix factorization" (nsNMF), corresponds to the optimization of an unambiguous cost function designed to explicitly represent sparseness, in the form of nonsmoothness, which is controlled by a single parameter. In general, this method produces a set of basis and encoding vectors that are not only capable of representing the original data, but they also extract highly focalized patterns, which generally lend themselves to improved interpretability. The properties of this new method are illustrated with several data sets. Comparisons to previously published methods show that the new nsNMF method has some advantages in keeping faithfulness to the data in the achieving a high degree of sparseness for both the estimated basis and the encoding vectors and in better interpretability of the factors.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 3 )