By Topic

Ordering and finding the best of K > 2 supervised learning algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O. T. Yildiz ; Dept. of Comput. Eng., Bogazici Univ., Istanbul, Turkey ; E. Alpaydin

Given a data set and a number of supervised learning algorithms, we would like to find the algorithm with the smallest expected error. Existing pairwise tests allow a comparison of two algorithms only; range tests and ANOVA check whether multiple algorithms have the same expected error and cannot be used for finding the smallest. We propose a methodology, the multitest algorithm, whereby we order supervised learning algorithms taking into account 1) the result of pairwise statistical tests on expected error (what the data tells us), and 2) our prior preferences, e.g., due to complexity. We define the problem in graph-theoretic terms and propose an algorithm to find the "best" learning algorithm in terms of these two criteria, or in the more general case, order learning algorithms in terms of their "goodness." Simulation results using five classification algorithms on 30 data sets indicate the utility of the method. Our proposed method can be generalized to regression and other loss functions by using a suitable pairwise test.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:28 ,  Issue: 3 )