By Topic

Fast and reliable collision culling using graphics hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Govindaraju, N.K. ; North Carolina Univ., Chapel Hill, NC, USA ; Lin, M.C. ; Manocha, D.

We present a reliable culling algorithm that enables fast and accurate collision detection between triangulated models in a complex environment. Our algorithm performs fast visibility queries on the GPUs for eliminating a subset of primitives that are not in close proximity. In order to overcome the accuracy problems caused by the limited viewport resolution, we compute the Minkowski sum of each primitive with a sphere and perform reliable 2.5D overlap tests between the primitives. We are able to achieve more effective collision culling as compared to prior object-space culling algorithms. We integrate our culling algorithm with CULLIDE and use it to perform reliable GPU-based collision queries at interactive rates on all types of models, including nonmanifold geometry, deformable models, and breaking objects.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 2 )