By Topic

Some New Parallel Fast Fourier Transform Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhong Cui-xiang ; South China University of Technology Jiangxi Normal University Guangzhou ; Han Guo-qiang ; Huang Ming-He

Discrete Fourier transform (DFT) has many applications in digital signal and image processing and other scientific and technological domains, but its time complexity of direct computation is O(n2), limiting greatly its application range. Thus many people have developed fast Fourier transform (FFT) algorithms, reducing the complexity from O(n2) to O(nlogn)(In this paper logn denotes log2n).But for large n, O(nlogn) is still very high. So multiprocessor systems have been used to speed up the computation of DFT. This paper first introduces a new general method to deduce FFT algorithms, then transforms the deduced second radix-2 decimation-in-time FFT algorithm into another parallelizable sequential form, and finally transforms the latter algorithm into a new parallel FFT algorithm, reducing the time complexity of DFT to O(nlogn/p) (where p is the number of processors). Using similar methods, the authors can also design other new parallel 1-D and 2-D FFT algorithms.

Published in:

Parallel and Distributed Computing, Applications and Technologies, 2005. PDCAT 2005. Sixth International Conference on

Date of Conference:

05-08 Dec. 2005