By Topic

Routing algorithm for provisioning symmetric virtual private networks in the hose model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tat Wing Chim ; Dept. of Electr. & Electron. Eng., Hong Kong Univ., China ; King-Shan Lui ; Yeung, K.L. ; Chi Ping Wong

A virtual private network (VPN) is a private data network where remote sites are connected over a shared provider network. In order to provide secure communications between customer sites, predetermined paths are used to forward data packets. To support quality of service (QoS), bandwidth has to be reserved on these paths. Then, finding appropriate paths in order to optimize the bandwidth used becomes an important problem. In this paper, we study the routing problem of VPNs under the hose model, where VPN endpoints specify the maximum bandwidth they need in sending and receiving data. Some previous works considered the problem under the assumption that all links have infinite capacities. We remove this constraint in our studies and develop enhancement to existing algorithms. Our simulation results show that our algorithm works very well in networks where link capacities are tight.

Published in:

Global Telecommunications Conference, 2005. GLOBECOM '05. IEEE  (Volume:2 )

Date of Conference:

28 Nov.-2 Dec. 2005