By Topic

Scene modelling using an adaptive mixture of Gaussians in colour and space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dickinson, P. ; Dept. of Comput. & Inf., Lincoln Univ., UK ; Hunter, A.

We present an integrated pixel segmentation and region tracking algorithm, designed for indoor environments. Visual monitoring systems often use frame differencing techniques to independently classify each image pixel as either foreground or background. Typically, this level of processing does not take account of the global image structure, resulting in frequent misclassification. We use an adaptive Gaussian mixture model in colour and space to represent background and foreground regions of the scene. This model is used to probabilistically classify observed pixel values, incorporating the global scene structure into pixel-level segmentation. We evaluate our system over 4 sequences and show that it successfully segments foreground pixels and tracks major foreground regions as they move through the scene.

Published in:

Advanced Video and Signal Based Surveillance, 2005. AVSS 2005. IEEE Conference on

Date of Conference:

15-16 Sept. 2005