By Topic

A game theory approach to constrained minimax state estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Simon, D. ; Dept. of Electr. & Comput. Eng., Cleveland State Univ., OH, USA

This paper presents a game theory approach to the constrained state estimation of linear discrete time dynamic systems. In the application of state estimators, there is often known model or signal information that is either ignored or dealt with heuristically. For example, constraints on the state values (which may be based on physical considerations) are often neglected because they do not easily fit into the structure of the state estimator. This paper develops a method for incorporating state equality constraints into a minimax state estimator. The algorithm is demonstrated on a simple vehicle tracking simulation.

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 2 )