By Topic

Quantized control via locational optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bullo, F. ; Dept. of Mech. & Environ. Eng., Univ. of California, Santa Barbara, CA, USA ; Liberzon, D.

This paper studies state quantization schemes for feedback stabilization of control systems with limited information. The focus is on designing the least destabilizing quantizer subject to a given information constraint. We explore several ways of measuring the destabilizing effect of a quantizer on the closed-loop system, including (but not limited to) the worst-case quantization error. In each case, we show how quantizer design can be naturally reduced to a version of the so-called multicenter problem from locational optimization. Algorithms for obtaining solutions to such problems, all in terms of suitable Voronoi quantizers, are discussed. In particular, an iterative solver is developed for a novel weighted multicenter problem which most accurately represents the least destabilizing quantizer design. A simulation study is also presented.

Published in:

Automatic Control, IEEE Transactions on  (Volume:51 ,  Issue: 1 )