By Topic

Special paraunitary matrices, Cayley transform, and multidimensional orthogonal filter banks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianping Zhou ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at urbana-Champaign, Urbana, IL, USA ; Do, M.N. ; Kovacevic, J.

We characterize and design multidimensional (MD) orthogonal filter banks using special paraunitary matrices and the Cayley transform. Orthogonal filter banks are represented by paraunitary matrices in the polyphase domain. We define special paraunitary matrices as paraunitary matrices with unit determinant. We show that every paraunitary matrix can be characterized by a special paraunitary matrix and a phase factor. Therefore, the design of paraunitary matrices (and thus of orthogonal filter banks) becomes the design of special paraunitary matrices, which requires a smaller set of nonlinear equations. Moreover, we provide a complete characterization of special paraunitary matrices in the Cayley domain, which converts nonlinear constraints into linear constraints. Our method greatly simplifies the design of MD orthogonal filter banks and leads to complete characterizations of such filter banks.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 2 )