Cart (Loading....) | Create Account
Close category search window
 

Semi-blind image restoration via Mumford-Shah regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bar, L. ; Sch. of Electr. Eng., Tel Aviv Univ., Israel ; Sochen, N. ; Kiryati, N.

Image restoration and segmentation are both classical problems, that are known to be difficult and have attracted major research efforts. This paper shows that the two problems are tightly coupled and can be successfully solved together. Mutual support of image restoration and segmentation processes within a joint variational framework is theoretically motivated, and validated by successful experimental results. The proposed variational method integrates semi-blind image deconvolution (parametric blur-kernel), and Mumford-Shah segmentation. The functional is formulated using the Γ-convergence approximation and is iteratively optimized via the alternate minimization method. While the major novelty of this work is in the unified treatment of the semi-blind restoration and segmentation problems, the important special case of known blur is also considered and promising results are obtained.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.