By Topic

Prediction for human motion tracking failures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. L. Dockstader ; ITT Ind. Space Syst. Div., Rochester, NY, USA ; N. S. Imennov

We propose a new and effective method of predicting tracking failures and apply it to the robust analysis of gait and human motion. We define a tracking failure as an event and describe its temporal characteristics using a hidden Markov model (HMM). We represent the human body using a three-dimensional, multicomponent structural model, where each component is designed to independently allow the extraction of certain gait variables. To enable a fault-tolerant tracking and feature extraction system, we introduce a single HMM for each element of the structural model, trained on previous examples of tracking failures. The algorithm derives vector observations for each Markov model using the time-varying noise covariance matrices of the structural model parameters. When transformed with a logarithmic function, the conditional output probability of each HMM is shown to have a causal relationship with imminent tracking failures. We demonstrate the effectiveness of the proposed approach on a variety of multiview video sequences of complex human motion.

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 2 )