By Topic

Automated reassembly of file fragmented images using greedy algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Memon ; Comput. Sci. Dept., Polytech. Univ., Brooklyn, NY, USA ; A. Pal

The problem of restoring deleted files from a scattered set of fragments arises often in digital forensics. File fragmentation is a regular occurrence in hard disks, memory cards, and other storage media. As a result, a forensic analyst examining a disk may encounter many fragments of deleted digital files, but is unable to determine the proper sequence of fragments to rebuild the files. In this paper, we investigate the specific case where digital images are heavily fragmented and there is no file table information by which a forensic analyst can ascertain the correct fragment order to reconstruct each image. The image reassembly problem is formulated as a k-vertex disjoint graph problem and reassembly is then done by finding an optimal ordering of fragments. We provide techniques for comparing fragments and describe several algorithms for image reconstruction based on greedy heuristics. Finally, we provide experimental results showing that images can be reconstructed with high accuracy even when there are thousands of fragments and multiple images involved.

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 2 )