By Topic

Space-time image sequence analysis: object tunnels and occlusion volumes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Ristivojevic ; Dept. of Electr. & Comput. Eng., Boston Univ., MA, USA ; J. Konrad

We address the issue of image sequence analysis jointly in space and time. While typical approaches to such an analysis consider two image frames at a time, we propose to perform this analysis jointly over multiple frames. We concentrate on spatiotemporal segmentation of image sequences and on analysis of occlusion effects therein. The segmentation process is three-dimensional (3-D); we search for a volume carved out by each moving object in the image sequence domain, or "object tunnel", a new space-time concept. We pose the problem in variational framework by using only motion information (no intensity edges). The resulting formulation can be viewed as volume competition, a 3-D generalization of region competition. We parameterize the unknown surface to be estimated, but rather than using an active-surface approach, we embed it into a higher dimensional function and apply the level-set methodology. We first develop simple models for the detection of moving objects over static background; no motion models are needed. Then, in order to improve segmentation accuracy, we incorporate motion models for objects and background. We further extend the method by including explicit models for occluded and newly exposed areas that lead to "occlusion volumes," another new space-time concept. Since, in this case, multiple volumes are sought, we apply a multiphase variant of the level-set method. We present various experimental results for synthetic and natural image sequences.

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 2 )