By Topic

Sparse overcomplete Gabor wavelet representation based on local competitions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Fischer ; Inst. de Opt.-Consejo Superior de Investigaciones Cientificas, Madrid, Spain ; G. Cristobal ; R. Redondo

Gabor representations present a number of interesting properties despite the fact that the basis functions are nonorthogonal and provide an overcomplete representation or a nonexact reconstruction. Overcompleteness involves an expansion of the number of coefficients in the transform domain and induces a redundancy that can be further reduced through computational costly iterative algorithms like Matching Pursuit. Here, a biologically plausible algorithm based on competitions between neighboring coefficients is employed for adaptively representing any source image by a selected subset of Gabor functions. This scheme involves a sharper edge localization and a significant reduction of the information redundancy, while, at the same time, the reconstruction quality is preserved. The method is characterized by its biological plausibility and promising results, but it still requires a more in depth theoretical analysis for completing its validation.

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 2 )