Cart (Loading....) | Create Account
Close category search window
 

Nonintrusive speech quality estimation using Gaussian mixture models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Falk, T.H. ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, Ont., Canada ; Wai-Yip Chan

An algorithm for nonintrusive speech quality estimation based on Gaussian mixture models (GMMs) is presented. GMMs are used to form an artificial reference model of the behavior of features of undegraded speech. Consistency measures between the degraded speech signal and the reference model serve as indicators of speech quality. Consistency values are mapped to an objective speech quality score using a multivariate adaptive regression splines function. When tested on unseen data, the proposed algorithm generally outperforms ITU-T standard P.563, which is the current "state-of-the-art" algorithm. The algorithm computes objective quality scores roughly twice as fast as P.563.

Published in:

Signal Processing Letters, IEEE  (Volume:13 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.