By Topic

Binary arithmetic coding with key-based interval splitting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiangtao Wen ; Mobilygen Corp., Santa Clara, CA, USA ; Hyungjin Kim ; J. D. Villasenor

Binary arithmetic coding involves recursive partitioning the range [0,1) in accordance with the relative probabilities of occurrence of the two input symbols. We describe a modification of this approach in which the overall length within the range [0,1) allocated to each symbol is preserved, but the traditional assumption that a single contiguous interval is used for each symbol is removed. A key known to both the encoder and decoder is used to describe where the intervals are "split" prior to encoding each new symbol. The repeated splitting has the effect of both scrambling the intervals and altering their lengths, thereby allowing both encryption and compression to be obtained simultaneously.

Published in:

IEEE Signal Processing Letters  (Volume:13 ,  Issue: 2 )