Cart (Loading....) | Create Account
Close category search window
 

Acoustic self-localization in a distributed sensor network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Frampton, K.D. ; Dept. of Mech. Eng., Vanderbilt Univ., Nashville, TN, USA

The purpose of this paper is to present a technique for determining the coordinate locations of nodes in a distributed sensor network. This technique is based on the time difference of arrival (TDOA) of acoustic signals. In this scheme, several sound sources of known locations transmit while each node in the sensor network records the wave front time-of-arrival. Data from the nodes are transmitted to a central processor and the nonlinear TDOA equations are solved. Computational simulation results are presented in order to quantify the solution behavior and its sensitivity to likely error sources. Results based on experimentally collected data are also presented in order to demonstrate the potential for this approach in solving the self-localization problem.

Published in:

Sensors Journal, IEEE  (Volume:6 ,  Issue: 1 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.