By Topic

Robust recurrent-neural-network sliding-mode control for the X-Y table of a CNC machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
F. -J. Lin ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien, Taiwan ; P. -H. Shieh ; P. -H. Shen

A robust recurrent-neural-network (RRNN) sliding-mode control is proposed for a biaxial motion mechanism to allow reference contour tracking. The biaxial motion mechanism is a X-Y table of a computer numerical control machine that is driven by two field-oriented control permanent-magnet synchronous motors. The single-axis motion dynamics are derived in terms of a lumped uncertainty that includes cross-coupled interference between the two-axes. A RRNN sliding-mode control system is proposed based on the derived motion dynamics to approximate the control obtained by using sliding-mode control and the motions at the X-axis and Y-axis are controlled separately. The motion tracking performance is significantly improved using the proposed control technique and robustness to parameter variations, external disturbances, cross-coupled interference and frictional torque can be obtained as well. Experimental results on circular, four-leaf, window and star reference contours are provided to show that the dynamic behaviour of the proposed control system is robust with regard to uncertainties.

Published in:

IEE Proceedings - Control Theory and Applications  (Volume:153 ,  Issue: 1 )