By Topic

Peak power reduction for OFDM systems with orthogonal pilot sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fernandez-Getino Garcia, M.J. ; Departamento de Teoria de la Senal y Comunicaciones, Univ. Carlos III de Madrid, Spain ; Edfors, O. ; Paez-Borrallo, J.M.

In this paper, a novel peak-to-average power reduction approach for orthogonal frequency division multiplexing (OFDM) has been addressed. Two-dimensional pilot-symbol assisted modulation (2D-PSAM) is employed in coherent OFDM for channel estimation, and it is based on inserting known symbols spread throughout the 2D time-frequency grid. These pilot symbols are employed to simultaneously perform distortionless peak power reduction with a suboptimum technique named orthogonal pilot sequences (OPS), which reduces additional system complexity and side information compared to optimum pilot values. This proposal attains a further step over other previous works, since this set of sequences allows blind detection at the receiver without prior knowledge of any side information.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:5 ,  Issue: 1 )