By Topic

Design and parallel computation of regularised fast Hartley transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jones, K.J. ; TRL Technol. Ltd., Tewkesbury, UK

The paper describes the design and parallel computation of a regularised fast Hartley transform (FHT), to be used for computation of the discrete Fourier transform (DFT) of real-valued data. For the processing of such data, the FHT has attractions over the fast Fourier transform (FFT) in terms of reduced arithmetic operation counts and reduced memory requirement, whilst its bilateral property means it may be straightforwardly applied to both forward and inverse DFTs. A drawback, however, of conventional FHT algorithms lies in the loss of regularity arising from the need for two sizes of 'butterfly' for efficient fixed-radix implementations. A generic double butterfly is therefore developed for the radix-4 FHT which overcomes the problem in an elegant fashion. The result is a recursive single-butterfly solution, referred to as the regularised FHT, which lends itself naturally to parallelisation and to mapping onto a regular computational structure for implementation with algorithmically specialised hardware.

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:153 ,  Issue: 1 )