Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Text region extraction and text segmentation on camera-captured document style images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Song, Y.J. ; Dept. of Comput. Sci., Sookmyung Women''s Univ., Korea ; Kim, K.C. ; Choi, Y.W. ; Byun, H.R.
more authors

In this paper, we propose a text extraction method from camera-captured document style images and propose a text segmentation method based on a color clustering method. The proposed extraction method detects text regions from the images using two low-level image features and verifies the regions through a high-level text stroke feature. The two level features are combined hierarchically. The low-level features are intensity variation and color variance. And, we use text strokes as a high-level feature using multi-resolution wavelet transforms on local image areas. The stroke feature vector is an input to a SVM (support vector machine) for verification, when needed. The proposed text segmentation method uses color clustering to the extracted text regions. We improved K-means clustering method and it selects K and initial seed values automatically. We tested the proposed methods with various document style images captured by three different cameras. We confirmed that the extraction rates are good enough to be used in real-life applications.

Published in:

Document Analysis and Recognition, 2005. Proceedings. Eighth International Conference on

Date of Conference:

29 Aug.-1 Sept. 2005