By Topic

Performance prediction of large-scale parallel discrete event models of physical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Perumalla, K.S. ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Fujimoto, R.M. ; Thakare, P.J. ; Santosh Pande
more authors

A virtualization system is presented that is designed to help predict the performance of parallel/distributed discrete event simulations on massively parallel (supercomputing) platforms. It is intended to be useful in experimenting with and understanding the effects of execution parameters, such as different load balancing schemes and mixtures of model fidelity. A case study of the virtualization system is presented in the context of plasma physics simulations, highlighting important virtualization challenges and issues, such as reentrancy and synchronization in the virtual plane, and our corresponding solution approaches. A trace-based prediction methodology is presented, and is evaluated with a 1-D hybrid collisionless shock model simulation, with the predicted performance being validated against one obtained in actual simulation. Predicted performance measurements show excellent agreement with actual performance measurements on parallel platforms containing up to 512 CPUs.

Published in:

Simulation Conference, 2005 Proceedings of the Winter

Date of Conference:

4-7 Dec. 2005