By Topic

On diversity reception over fading channels with impulsive noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tepedelenlioglu, C. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Ping Gao

In this paper, we analyze the performance of different diversity combining techniques over fading channels with impulsive noise. We use Middleton's Class A model for the noise distribution and adopt two noise models, which assume dependent and independent noise components on each branch. We systematically analyze the performance of maximum ratio combing (MRC), equal gain combining (EGC), selection combining (SC), and post-detection combining (PDC) under these impulsive noise models, and derive insightful lower and upper bounds. We show that even under impulsive noise, the diversity order is retained for each combining scheme. However, we also show that under both models, there is a fundamental tradeoff between diversity gain and coding gain. Under the independent noise model, PDC is shown to combat impulsive noise more effectively than MRC, EGC, and SC. Our simulation results also corroborate our analysis.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:54 ,  Issue: 6 )