By Topic

On the conception and analysis of a 12-GHz push-push phase-locked DRO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gravel, J.-F. ; Defence Res. & Dev., Nat. Defence Canada, Ottawa, Ont. ; Wight, J.S.

This paper describes the design and behavior of a 12-GHz push-push dielectric resonator oscillator in a phase-locked environment. This phase-locked dielectric resonator oscillator (PLDRO) differs from conventional designs on many fronts. First, it uses a push-push oscillator for its improved phase noise and reduced fundamental frequency. Second, the phase detection is implemented at a 3-GHz IF as an alternative to detecting at RF using a sampling phase detector (PD). Finally, the push-push PLDRO is tuned via coupled microstrip lines to minimize oscillator loading. These modifications are intended to minimize the risk of PLDRO lock failures by maintaining a constant PD gain via amplifiers operating at P1dB, and by halving the DRO fundamental frequency using the push-push approach. Experimental results indicate a fundamental suppression of 27 dBc, and single-sideband phase noise densities of -105, -110, and -125 dBc/Hz at 10-kHz, 100-kHz, and 1-MHz offsets, respectively, from a 12-GHz carrier

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 1 )