By Topic

Solving time domain electric field Integral equation without the time variable

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhong Ji ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., NY, USA ; T. K. Sarkar ; Baek Ho Jung ; Mengtao Yuan
more authors

An improved testing procedure using the marching-on-in-order method to solve the time-domain electric field integral equation (TD-EFIE) for conducting objects using the Laguerre polynomials is presented. Exact temporal testing is performed before the spatial testing, therefore the retarded terms composed of the spatial and the temporal variables can be analytically separated. The uniqueness of this testing procedure is that the time variable can be analytically integrated out and the accuracy can be improved. This paper is then an improvement over the earlier marching-on-in-order method. In addition, this methodology is quite different from the conventional marching-on-in-time algorithm as the present method leads to a set of final equations which need to be numerically solved containing only the spatial variables. Therefore, there is no requirement to have a Courant stability condition in this procedure. How the singular integrals are treated is also discussed. Several examples are simulated both for radiation and scattering problem. The results are compared with the inverse discrete Fourier transform of the frequency domain data and they agree well.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:54 ,  Issue: 1 )