By Topic

Optimization of coupling between photonic crystal resonator and curved microfiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
In-Kag Hwang ; Dept. of Phys., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Kim, Guk-Hyun ; Yong-Hee Lee

The evanescent coupling from a photonic crystal resonator to a micron-thick optical fiber is investigated in detail by using a three-dimensional finite-difference time-domain (3D-FDTD) method. Properly designed photonic crystal cavity and taper structures are proposed, and optimal operating conditions are found to enhance the coupling strength while suppressing other cavity losses including the coupling to the slab propagating mode and to the higher-order fiber mode. In simulation, the coupling into the fundamental fiber mode is discriminated from other cavity losses by spatial and parity filtering of the FDTD results. The coupling efficiency of more than 80% into the fundamental fiber mode together with a total Q factor of 5200 is achieved for the fiber diameter of 1.0 μm and the air gap of 200 nm between the fiber and the cavity.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:42 ,  Issue: 2 )