By Topic

Aggregating automatically extracted regulatory pathway relations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Marshall, B. ; Oregon State Univ., Corvallis, OR ; Hua Su ; McDonald, D. ; Eggers, S.
more authors

Automatic tools to extract information from biomedical texts are needed to help researchers leverage the vast and increasing body of biomedical literature. While several biomedical relation extraction systems have been created and tested, little work has been done to meaningfully organize the extracted relations. Organizational processes should consolidate multiple references to the same objects over various levels of granularity, connect those references to other resources, and capture contextual information. We propose a feature decomposition approach to relation aggregation to support a five-level aggregation framework. Our BioAggregate tagger uses this approach to identify key features in extracted relation name strings. We show encouraging feature assignment accuracy and report substantial consolidation in a network of extracted relations

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 1 )