Cart (Loading....) | Create Account
Close category search window

Computer-aided kidney segmentation on abdominal CT images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daw-Tung Lin ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taipei Univ., Taipei Taiwan ; Chung-Chih Lei ; Siu-Wan Hung

In this paper, an effective model-based approach for computer-aided kidney segmentation of abdominal CT images with anatomic structure consideration is presented. This automatic segmentation system is expected to assist physicians in both clinical diagnosis and educational training. The proposed method is a coarse to fine segmentation approach divided into two stages. First, the candidate kidney region is extracted according to the statistical geometric location of kidney within the abdomen. This approach is applicable to images of different sizes by using the relative distance of the kidney region to the spine. The second stage identifies the kidney by a series of image processing operations. The main elements of the proposed system are: 1) the location of the spine is used as the landmark for coordinate references; 2) elliptic candidate kidney region extraction with progressive positioning on the consecutive CT images; 3) novel directional model for a more reliable kidney region seed point identification; and 4) adaptive region growing controlled by the properties of image homogeneity. In addition, in order to provide different views for the physicians, we have implemented a visualization tool that will automatically show the renal contour through the method of second-order neighborhood edge detection. We considered segmentation of kidney regions from CT scans that contain pathologies in clinical practice. The results of a series of tests on 358 images from 30 patients indicate an average correlation coefficient of up to 88% between automatic and manual segmentation

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 1 )

Date of Publication:

Jan. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.