By Topic

A meta-analysis of the training effectiveness of virtual reality surgical simulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haque, S. ; Dept. of Health Informatics, Univ. of Med. & Dentistry of New Jersey, Newark, NJ ; Srinivasan, S.

The increasing use of virtual reality (VR) simulators in surgical training makes it imperative that definitive studies be performed to assess their training effectiveness. Indeed, in this paper we report the meta-analysis of the efficacy of virtual reality simulators in: 1) the transference of skills from the simulator training environment to the operating room, and 2) their ability to discriminate between the experience levels of their users. The task completion time and the error score were the two study outcomes collated and analyzed in this meta-analysis. Sixteen studies were identified from a computer-based literature search (1996-2004). The meta-analysis of the random effects model (because of the heterogeneity of the data) revealed that training on virtual reality simulators did lessen the time taken to complete a given surgical task as well as clearly differentiate between the experienced and the novice trainees. Meta-analytic studies such as the one reported here would be very helpful in the planning and setting up of surgical training programs and for the establishment of reference `learning curves' for a specific simulator and surgical task. If any such programs already exist, they can then indicate the improvements to be made in the simulator used, such as providing for more variety in their case scenarios based on the state and/or rate of learning of the trainee

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 1 )