By Topic

A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang Shitong ; Comput. Dept., Southern Yangtse Univ., Wuxi ; Wang Min

White blood cell detection is one of the most basic and key steps in the automatic recognition system of white blood cells in microscopic blood images. Its accuracy and stability greatly affect the operating speed and recognition accuracy of the whole system. But there are only a few methods available for cell detection or segmentation due to the complexity of the microscopic images. This paper focuses on this issue. Based on the detailed analysis of the existing two methods-threshold segmentation followed by mathematical morphology (TSMM), and the fuzzy logic method-a new detection algorithm (NDA) based on fuzzy cellular neural networks is proposed. NDA combines the advantages of TSMM and the fuzzy logic method, and overcomes their drawbacks. With NDA, we can detect almost all white blood cells, and the contour of each detected cell is nearly complete. Its adaptability is strong and the running speed is expected to be comparatively high due to the easy hardware implementation of FCN. Experimental results show good performance

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 1 )