By Topic

Front-to-backside alignment using resist-patterned etch control and one etching step

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim, E.S. ; Dept. of Electr. Eng., Univ. of Hawaii at Manoa, Honolulu, HI, USA ; Muller, R.S. ; Hijab, R.S.

A processing technique that aligns features on the front side of a wafer to those on its backside has been developed for bulk micromachining. A 30 μm-square and 1.6 μm-thick diaphragm serves as an alignment pattern. At the same time that the alignment diaphragm is made, much thicker, large-area diaphragms can be partially etched using `mesh' masking patterns in these areas. The mesh-masking technique exploits the etch-rate differences between (100) and (111) planes to control the depths reached by etch pits in selected areas. The large partially etched diaphragms (2 to 3 mm2, roughly 100 μm thick) are sufficiently robust to survive subsequent IC-processing steps in a silicon-foundry environment. The thin alignment diaphragm can be processed through these steps because of its very small area. The partially etched diaphragms can be reduced to useful thicknesses in a final etch step after the circuits have been fabricated

Published in:

Microelectromechanical Systems, Journal of  (Volume:1 ,  Issue: 2 )