By Topic

A fast new algorithm for training feedforward neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Scalero, R.S. ; Grumman Melbourne Syst., FL, USA ; Tepedelenlioglu, N.

A fast algorithm is presented for training multilayer perceptrons as an alternative to the backpropagation algorithm. The number of iterations required by the new algorithm to converge is less than 20% of what is required by the backpropagation algorithm. Also, it is less affected by the choice of initial weights and setup parameters. The algorithm uses a modified form of the backpropagation algorithm to minimize the mean-squared error between the desired and actual outputs with respect to the inputs to the nonlinearities. This is in contrast to the standard algorithm which minimizes the mean-squared error with respect to the weights. Error signals, generated by the modified backpropagation algorithm, are used to estimate the inputs to the nonlinearities, which along with the input vectors to the respective nodes, are used to produce an updated set of weights through a system of linear equations at each node. These systems of linear equations are solved using a Kalman filter at each layer

Published in:

Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 1 )