By Topic

A VLSI architecture for real-time image coding using a vector quantization based algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Dezhgosha ; Dept. of Math. & Comput. Sci., Central State Univ., Wilberforce, OH, USA ; M. M. Jamali ; S. C. Kwatra

Digital image coding using vector quantization (VQ) based techniques provides low-bit rates and high quality coded images, at the expense of intensive computational demands. The computational requirement due to the encoding search process, had hindered application of VQ to real-time high-quality coding of color TV images. Reduction of the encoding search complexity through partitioning of a large codebook into the on-chip memories of a concurrent VLSI chip set is proposed. A real-time vector quantizer architecture for encoding color images is developed. The architecture maps the mean/quantized residual vector quantizer (MQRVQ) (an extension of mean/residual VQ) onto a VLSI/LSI chip set. The MQRVQ contributes to the feasibility of the VLSI architecture through the use of a simple multiplication free distortion measure and reduction of the required memory per code vector. Running at a clock rate of 25 MHz the proposed hardware implementation of this architecture is capable of real-time processing of 480×768 pixels per frame with a refreshing rate of 30 frames/s. The result is a real-time high-quality composite color image coder operating at a fixed rate of 1.12 b per pixel

Published in:

IEEE Transactions on Signal Processing  (Volume:40 ,  Issue: 1 )