By Topic

Bias-remedy least mean square equation error algorithm for IIR parameter recursive estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lin, J.-N. ; Lehrstuhl fur Allgemeine und Theor. Elektrotechnik, Erlangen-Nurnberg Univ., Germany ; Unbehauen, R.

In the area of infinite impulse response (IIR) system identification and adaptive filtering the equation error algorithms used for recursive estimation of the plant parameters are well known for their good convergence properties. However, these algorithms give biased parameter estimates in the presence of measurement noise. A new algorithm is proposed on the basis of the least mean square equation error (LMSEE) algorithm, which manages to remedy the bias while retaining the parameter stability. The so-called bias-remedy least mean square equation error (BRLE) algorithm has a simple form. The compatibility of the concept of bias remedy with the stability requirement for the convergence procedure is supported by a practically meaningful theorem. The behavior of the BRLE has been examined extensively in a series of computer simulations

Published in:

Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 1 )