By Topic

A prefix tree-based model for mining association rules from quantitative temporal data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yo-Ping Huang ; Dept. of Comput. Sci. & Eng., Tatung Univ., Taipei, Taiwan ; Li-Jen Kao ; Sandnes, F.-E.

There are two problems as we use conventional Boolean association rules mining algorithm to discover temporal association rules over the stock market to predict stock price variation. The first problem is that the discovered rules only consider associations between the presence and absence of variations of stock prices and the second problem is that the associations among stock price variations are within the same transaction day. For example, if stock A raises, then stock B raises the same day. This Boolean temporal association rule reveals no information of quantitative variations of stock prices and can only predict price trend in the same day. In this paper, we deal with the problem of mining temporal association rules in stock databases containing quantitative price variations to discover the associations among different transactions day. Our algorithm first employs data discretization concept to partition quantitative attributes into intervals and an adaptive a priori method that cooperates with time sliding window concept and prefix tree is developed to find quantitative temporal association rules. An example of such a rule might be "if stock A price variation raised 5% to 7% and stock B raised 2.5% to 5% the same day, then stock C will raise 0% to 2.5% in the next two days." In this case, the stock price variation is taking into consideration and the associated stock price variations belong to different transaction days. As compared with conventional methods, more useful results can be found from the proposed quantitative temporal association rules.

Published in:

Systems, Man and Cybernetics, 2005 IEEE International Conference on  (Volume:1 )

Date of Conference:

10-12 Oct. 2005