By Topic

Performance of a neuro-model-based robot controller: adaptability and noise rejection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Poo, A.N. ; Dept. of Mech. & Production Eng., Nat. Univ. of Singapore, Singapore ; Ang, M.H. ; Teo, C.L. ; Qing Li

Effective control strategies for robotic manipulators usually require the on-line computation of the robot dynamic model in real time. However, the complexity of the robot dynamic model makes this difficult to achieve in practice, and multiprocessor controller architectures appear attractive for real-time implementation inside the control servo loop. Furthermore, inevitable modelling errors, changing parameter values and disturbances can compromise controller stability and performance. In this paper, the performance of a neuro-model-based controller architecture is investigated. The neural network is used to adapt to unmodelled dynamics and parameter modelling errors. Simulation of the neuro-model-based control of a one-link robot demonstrates an improved performance over standard model-based control algorithm, in the presence of modelling errors and in the presence of disturbance and noise

Published in:

Intelligent Systems Engineering  (Volume:1 ,  Issue: 1 )