Cart (Loading....) | Create Account
Close category search window
 

Practical Vision-Based Monte Carlo Localization on a Legged Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sridharan, M. ; Department of Computer Sciences, The University of Texas at Austin 1 University Station C0500, Austin, Texas 78712-1188, smohan@cs.utexas.edu ; Kuhlmann, G. ; Stone, P.

Mobile robot localization, the ability of a robot to determine its global position and orientation, continues to be a major research focus in robotics. In most past cases, such localization has been studied on wheeled robots with range finding sensors such as sonar or lasers. In this paper, we consider the more challenging scenario of a legged robot localizing with a limited field-of-view camera as its primary sensory input. We begin with a baseline implementation adapted from the literature that provides a reasonable level of competence, but that exhibits some weaknesses in real-world tests. We propose a series of practical enhancements designed to improve the robot’s sensory and actuator models that enable our robots to achieve a 50% improvement in localization accuracy over the baseline implementation. We go on to demonstrate how the accuracy improvement is even more dramatic when the robot is subjected to large unmodeled movements. These enhancements are each individually straightforward, but together they provide a roadmap for avoiding potential pitfalls when implementing Monte Carlo Localization on vision-based and/or legged robots.

Published in:

Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on

Date of Conference:

18-22 April 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.