By Topic

Optimal Communication Control for Cooperative Autonomous Underwater Vehicle Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Napoli, J.T. ; Department of Electrical & Systems Engineering Washington University in St. Louis One Brookings Drive, St. Louis, MO. 63130, USA ; Tzyh Jong Tarn ; Morrow, J.R., Jr. ; An, E.

Robotic networks for Autonomous Underwater Vehicles (AUV’s) are an area where efficient use of the communications channel can increase both the mission time and the amount of information communicated between the AUVs, thus resulting in a more effective mission. The traffic in robotic networks must be managed in such a way that takes into account transmission delay, power efficiency, and traditional network measures such as queue length, throughput, and bandwidth efficiency. System optimization of all these criteria is possible because of the cooperative nature of robotic networks. This paper presents a procedure for con structing optimal controllers that limit and route information flow in a network of AUVs. Particular attention is paid to the objectives of maximizing throughput and bandwidth efficiency while minimizing power consumption and queue length. A receding horizon control approach is adopted and shown to yield piecewise continuous optimal controllers that are unique.

Published in:

Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on

Date of Conference:

18-22 April 2005