By Topic

Constraint-Based Motion Planning of Deformable Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gayle, Russell ; Department of Computer Science University of North Carolina at Chapel Hill ; Lin, M.C. ; Manocha, D.

We present a novel algorithm for motion planning of a deformable robot in a static environment. Given the initial and final configuration of the robot, our algorithm computes an approximate path using the probabilistic roadmap method. We use "constraint-based planning" to simulate robot deformation and make appropriate path adjustments and corrections to compute a collision-free path. Our algorithm takes into account geometric constraints like non-penetration and physical constraints like volume preservation. We highlight the performance of our planner on different scenarios of varying complexity.

Published in:

Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on

Date of Conference:

18-22 April 2005