By Topic

Two novel FDTD based UWB indoor propagation models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yan Zhao ; Dept. of Electron. Eng., London Univ., UK ; Yang Hao ; Parini, C.

This paper presents two novel finite-difference time-domain (FDTD) based methods for UWB propagation modelling. For the dispersive FDTD model, Debye material is considered and the frequency dependent material information is discretely converted into time domain by using differential equation-based algorithm; for the sub-band FDTD model, the whole ultra wideband (3.1-10.6 GHz) is divided into 11 subbands with 700 MHz bandwidth and each sub-band is simulated separately using measured frequency-dependent material properties. Both the dispersive FDTD and the sub-band FDTD methods are verified by comparing reflection coefficients obtained from one-dimensional (1-D) simulation and analytical equations. The results from two-dimensional (2-D) dispersive FDTD, subband FDTD and UWB ray tracing simulations are obtained and discussed.

Published in:

Ultra-Wideband, 2005. ICU 2005. 2005 IEEE International Conference on

Date of Conference:

5-8 Sept. 2005