By Topic

A Three-Dimensional Interferometric CT Measurement and Visualization for High-Speed Flow Induced by Shock Waves Discharged from Open Ends

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Ota ; Graduate student, Graduate School of Science and Technology, Chiba University. Email address: ; T. Koga ; K. Toyoda ; K. Maeno

Three-dimensional flow phenomena have been observed in a shock tube experiment for shock waves and vortices by using an interferometric CT (Computed Tomography) technique with a N2pulse laser. A model with small duct, which has a pair of circular open ends, is introduced in a test section of diaphragmless shock tube, and can be rotated around its central axis to change the observation angle. The projection image of density distribution for each observation angle is obtained by using a fixed Mach-Zehnder interferometer. Three-dimensional density distribution is reconstructed from these projection images. The shock Mach number is 2.3 in nitrogen gas of 19.4kPa initial pressure at the exits of the open ends. The resultant 3-D density flow fields are illustrated by several imaging technique to clarify 3-D features of shock waves, vortices, and their mutual interactions. A computational fluid dynamics (CFD) simulation is also applied to the 3-D flow fields. The CFD results can represent density and another properties in flow fields, and these properties are useful for identifying the phenomena. The mutual validation between the experimental CT density results and these CFD results is discussed. Three-dimensional features of flow fields are investigated in detail by analyzing the experimental CT results with CFD results.

Published in:

ICIASF 2005 RecordInternational Congress onInstrumentation in AerospaceSimulation Facilities

Date of Conference: