By Topic

PZMI and wavelet transform features in face recognition system using a new localization method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rashidy Kanan, H. ; Electr. Eng. Dept., Amirkabir Univ. of Technol., Tehran, Iran ; Faez, K.

This paper compares performances of the pseudo zernike moment invariant (PZMI) and wavelet transform features in the application of face recognition. In this study, after preprocessing and face localization of an image, we optimize the exact location of oval shape of face in the image with genetic algorithm which improves the recognition rate. High order PZMI and discrete wavelet transform (Haar wavelet) is utilized to produce feature vectors. In the wavelet transform step, we used Mallat pyramid algorithm for finding approximation of the image in lower resolution and decomposed each image in 4 resolution level. Also RBF neural network with HLA learning algorithm has been used as a classifier. Simulation results on ORL database show that approximately the same results are obtained for both PZMI and wavelet features. But feature extraction using wavelet transform has a rate of 0.078 image/Sec that is about 11 times faster than the rate of PZMI feature.

Published in:

Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE

Date of Conference:

6-10 Nov. 2005