By Topic

An optimal design of a grid connected hybrid wind/photovoltaic/fuel cell system for distributed energy production

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Das, D. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Esmaili, R. ; Longya Xu ; Nichols, D.

This paper proposes a hybrid energy system consisting of wind, photovoltaic and fuel cell designed to supply continuous power to the load. A simple and economic control with DC-DC converter is used for maximum power point tracking and hence maximum power extraction from the wind turbine and photovoltaic array. Due to the intermittent nature of both the wind and photovoltaic energy sources, a fuel cell is added to the system for the purpose of ensuring continuous power flow. The fuel cell is thus controlled to provide the deficit power when the combined wind and photovoltaic sources cannot meet the net power demand. In worst environmental conditions, when there is no output power from the wind or photovoltaic sources, the fuel cell will operate at its rated power of 10 kW. Hence this system under any operating condition will ensure a minimum power flow of 10 kW to the load. This hybrid system allows maximum utilization of freely available renewable energy sources like wind and photovoltaic and demand-based utilization of hydrogen-based fuel cell. The proposed system is attractive owing to its simplicity, ease of control and low cost. Also it can be easily adjusted to accommodate different and any number of energy sources. A complete description of this system is presented along with its simulation results which ascertain its feasibility.

Published in:

Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE

Date of Conference:

6-10 Nov. 2005