Cart (Loading....) | Create Account
Close category search window
 

Load power compensations for stabilized DC-link voltage of the cascade controlled rectifier/inverter-motor drive system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liutanakul, P. ; GREEN-INPL-CNRS, Nancy, France ; Pierfederici, S. ; Meibody-Tabar, F.

The necessity of the compactness of the converters in many applications imposes the reduction of the size of their different components when it is possible. In this paper, the cascade of a grid connected voltage controlled rectifier and an inverter supplying a motor is considered and the effect of diminution of DC-link capacitor (C0 on Fig.1) on the stability of the DC-link voltage is investigated using small-signal linearization and impedance criterion. The output impedance of the controlled rectifier is studied in both cases of DC-link voltage control (DC-VC) and DC-link energy control (DC-EC). The input impedance of the inverter-motor stage, for which the control is based on the classical field orientation, is also explained. In ideal case, if the power delivered by the controlled rectifier can track the load power, the DC-link voltage remains almost constant even in transitory state. Under this condition a low value of C0 could ensure the stability of the DC-link voltage. Then, three methods of power load compensation, i.e. a decoupling matrix, a nonlinear feedback compensation and the feedback linearization technique, are proposed and studied for stabilizing the DC-link voltage. The results are illustrated by means of digital computer simulations of complete induction motor and controlled rectifier models with full order linear closed loop flux observer.

Published in:

Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE

Date of Conference:

6-10 Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.